Usability

Prof. Rob Miller
MIT EECS

Select an award style.__ x|

Selectan
award style
using the ~contifcate o =
scroll bar. , ITENEMENT
When ACHTEV—E M lﬁh T
wou've found '™
a style that
SUits you,
press OKAY
o create that — =
award and
open the
editor.

.....

[Hoot: bty 0]

Source: Interface Hall of Shame

Usability is about creating effective user interfaces (Uls). Slapping a pretty window interface on a program
does not automatically confer usability on it. This example shows why. This dialog box, which appeared in a
program that prints custom award certificates, presents the task of selecting a template for the certificate.

This interface is clearly graphical. It’s mouse-driven — no memorizing or typing complicated commands. It’s
even what-you-see-is-what-you-get (WYSIWYG) — the user gets a preview of the award that will be created.
So why isn’t it usable?

The first clue that there might be a problem here is the long help message on the left side. Why so much help
for a simple selection task? Because the interface is bizarre! The scrollbar is used to select an award
template. Each position on the scrollbar represents a template, and moving the scrollbar back and forth
changes the template shown.

This is a cute but bad use of a scrollbar. Notice that the scrollbar doesn’t have any marks on it. How many
templates are there? How are they sorted? How far do you have to move the scrollbar to select the next
one? You can’t even guess from this interface.

Select an award style.__ x|

Selectan
award style
using the
scroll bar,
When
wou've found
a style that
SUits you,
press OKAY
to create that
award and
open the

editar. CUSTOMER SERVICE AWARD
K| b &

Cancel | 0K |

Source: Interface Hall of Shame

v 2k, va]

Normally, a horizontal scrollbar underneath an image (or document, or some other content) is designed for
scrolling the content horizontally. A new or infrequent user looking at the window sees the scrollbar, assumes
it serves that function, and ignores it. Inconsistency with prior experience and other applications tends to
trip up new or infrequent users.

Another way to put it is that the horizontal scrollbar is an affordance for continuous scrolling, not for discrete

selection. We see affordances out in the real world, too; a door knob says “turn me”, a handle says “pull me”.
We've all seen those apparently-pullable door handles with a little sign that says “Push”; and many of us have
had the embarrassing experience of trying to pull on the door before we notice the sign. The help text on this
dialog box is filling the same role here.

But the dialog doesn’t get any better for frequent users, either. If a frequent user wants a template they’ve
used before, how can they find it? Surely they’ll remember that it’s 56% of the way along the scrollbar? This
interface provides no shortcuts for frequent users. In fact, this interface takes what should be a random
access process and transforms it into a linear process. Every user has to look through all the choices, even if
they already know which one they want. The computer scientist in you should cringe at that algorithm.

Even the help text has usability problems. “Press OKAY”? Where is that? And why does the message have a
ragged left margin? You don’t see ragged left too often in newspapers and magazine layout, and there’s a
good reason.

On the plus side, the designer of this dialog box at least recognized that there was a problem — hence the help
message. But the help message is indicative of a flawed approach to usability. Usability can’t be left until the
end of software development, like package artwork or an installer. It can’t be patched here and there with
extra messages or more documentation. It must be part of the process, so that usability bugs can be fixed,
instead of merely patched.

How could this dialog box be redesigned to solve some of these problems?

w Click and Print ' X|

LCertificate: Preview:
Certificate of [blank)
Certificate of Achievement

Create Your Dwin Award f L En
CUSTOMER SERVIcy

Distinguished Service
Employee of the Month

Leadership Award
Outstanding Performance
Safety Award -
Sales Award e
Team Player Award
OK I Cancel

Source: Interface Hall of Shame

Here’s one way it might be redesigned. The templates now fill a list box on the left;
selecting a template shows its preview on the right. This interface suffers from none of the
problems of its predecessor: list boxes clearly afford selection to new or infrequent users;
random access is trivial for frequent users. And no help message is needed.

7F 7
FusLanchDae [R5 _SelDs

SRR -
First Launch Time: Set Tin A o
10 2
Al Al
9 . /\13
g "y
l .l
r
7 5 a7}

Left Mouse Button: Change Minute
Right Mouze Buttorn: Change Hour

OK | Cancel

Source: Interface Hall of Shame

Here’s another bizarre interface, taken from a program that launches housekeeping tasks at
scheduled intervals. The date and time look like editable fields (affordance!), but you can’t
edit them with the keyboard. Instead, if you want to change the time, you have to click on
the Set Time button to bring up a dialog box.

This dialog box displays time differently, using 12-hour time (7:17 pm) where the original
dialog used 24-hour time (consistency!). Just to increase the confusion, it also adds a third

representation, an analog clock face.

So how is the time actually changed? By clicking mouse buttons: clicking the left mouse
button increases the minute by 1 (wrapping around from 59 to 0), and clicking the right
mouse button increases the hour. Sound familiar? This designer has managed to turn a
sophisticated graphical user interface, full of windows, buttons, and widgets, and controlled
by a hundred-key keyboard and two-button mouse, into a clock radio!

Perhaps the worst part of this example is that it’s not a result of laziness. Somebody went
to a lot of effort to draw that clock face with hands. If only they’d spent some of that time
thinking about usability instead.

* Sunset.jpg-3.0 (RGB) 50% CEIx

Select

Wiew

Image

Layers

Tools

Dialogs

Filters Ctl+
Media i Ctl+Q

Yideo

FoN_ Script-Fu - | L+
| [Bunset jng-3.0 (RGE) 50% |J

IAP 2010 6.470 IAP Web Programming Competition

Gimp is an open-source image editing program, comparable to Adobe Photoshop. Gimp’s
designers made a strange choice for its menus. Gimp windows have no menu bar. Instead,
all Gimp menus are accessed from a context menu, which pops up on right-click.

This is certainly inconsistent with other applications, and new users are likely to stumble
trying to find, for example, the File menu, which never appears on a context menu in other
applications. (I certainly stumbled as a new user of Gimp.) But Gimp’s designers were
probably thinking about expert users when they made this decision. A context menu
should be faster to invoke, since you don’t have to move the mouse up to the menu bar. A
context menu can be popped up anywhere. So it should be faster. Right?

Wrong. We'll see why later in this lecture.

Usability = how well users can use the system’s
functionality

Dimensions of usability

» Learnability: is it easy to learn and remember?
» Visibility: is the state of the system visible?

» Efficiency: once learned, is it fast to use!

» Errors: are errors few and recoverable?

» Satisfaction: is it enjoyable to use?

The property we’re concerned with here, usability, is more precise than just how “good”
the system is. A system can be good or bad in many ways. If important requirements are
unsatisfied by the system, that’s probably a deficiency in functionality, not in usability. If
the system is very expensive or crashes frequently, those problems certainly detract from
the user’s experience, but we don’t need user testing to tell us that.

More narrowly defined, usability measures how well users can use the system’s

functionality. Usability has several dimensions: learnability, visibility, efficiency, error rate/
severity, and subjective satisfaction, among others.

Notice that we can quantify all these measures of usability. Just as we can say algorithm X
is faster than algorithm Y on some workload, we can say that interface X is more learnable,
or more efficient, or causes fewer errors than interface Y for some set of tasks and some
class of users.

1. Design

design principles

|
/%\
pd A

3. Evaluate 2. Implement

user testing sketching

low-fidelity prototypes

Today we're going to talk about some ideas and techniques used in user interface design:
(1) design principles that can guide your conception of a user interface; (2) low-fidelity

prototyping techniques that help you try out your design cheaply and easily; and (3) user
testing to measure whether your design is usable.

Learnability
Visibility
Efficiency
Error handling
Simplicity

First, let’s look at some design guidelines. Usability guidelines, or heuristics, are rules that
distill out the principles of effective user interfaces. There are plenty of sets of guidelines
to choose from — sometimes it seems like every usability researcher has their own set of
heuristics. Most of these guidelines overlap in important ways, however. The experts don’t
disagree about what constitutes good Ul. They just disagree about how to organize what
we know into a small set of operational rules. This lecture is largely based on Jakob
Nielsen’s 10 heuristics, but another good list is Tog’s First Principles (see the references on
the last slide).

We'll classify the design principles into the usability goals that we're trying to satisfy:
Learnability concerns whether the interface is easy for people to learn and remember.

Visibility is about whether the interface gives feedback and makes its state easy for the
user to see and understand. Software is, by default, completely invisible, so a user
interface has to make extra effort to show what's going on.

Efficiency is about whether the interface is fast to operate.
Error handling is about reducing the frequency or cost of errors that the user makes.
Subjective satisfaction is about making users happier and more satisfied with the interface.

Simplicity is an overarching goal that tends to improve usability in general. Simpler
interfaces — with fewer parts to understand and use — tend to be more learnable, more
efficient, have fewer ways to make errors, and often more satisfying. Simplifying is often
the most effective way to improve usability.

Select an award style. ..

Selectan
award style
using the
scroll bar.
When
wou've founc
a style that
Suits you,
press OKAY
to create that
award anc
open the

ecoriffoas & =

Feu

T ot o enf

editar.

CERTIFICATE OF ACHIEVEMENT

Cancel |

Source: Interface Hall of Shame

Let's start with learnability. This is what many people are thinking about when they use
words like "intuitive" or "user-friendly". This example that we saw at the beginning of
lecture had serious problems with learnability, because it used the scrollbar in a way that's
unfamiliar, inconsistent, and frankly inappropriate

Source: Interface Hall of Shame

IBM’s RealCD is CD player software, which allows you to play an audio CD in your CD
-ROM drive.

Why is it called “Real”? Because its designers based it on a real-world object: a plastic CD
case. This interface has a metaphor, an analogue in the real world. Metaphors are one way
to make an interface “intuitive,” since users can make guesses about how it will work based
on what they already know about the interface’s metaphor. Unfortunately, the designers’
careful adherence to this metaphor produced some remarkable effects, none of them good.

Here’s how RealCD looks when it first starts up. Notice that the Ul is dominated by
artwork, just like the outside of a CD case is dominated by the cover art. That big RealCD
logo is just that — static artwork. Clicking on it does nothing.

There’s an obvious problem with the choice of metaphor, of course: a CD case doesn’t
actually play CDs. The designers had to find a place for the player controls — which,
remember, serve the primary task of the interface — so they arrayed them vertically along
the case hinge. The metaphor is dictating control layout, against all other considerations.

Slavish adherence to the metaphor also drove the designers to disregard all consistency with
other desktop applications. Where is this window’s close box? How do I shut it down?
You might be able to guess, but is it “intuitive?”” Learnability comes from more than just
metaphor.

11

Haalci

ER I B

Total Play Thive-: T2:55

Source: Interface Hall of Shame

But it gets worse. It turns out, like a CD case, this interface can also be opened. Oddly, the
designers failed to sensibly implement their metaphor here. Clicking on the cover art would
be a perfectly sensible way to open the case, and not hard to discover once you get
frustrated and start clicking everywhere. Instead, it turns out the only way to open the case
is by a toggle button control (the button with two little gray squares on it).

Opening the case reveals some important controls, including the list of tracks on the CD, a
volume control, and buttons for random or looping play. Evidently the metaphor dictated
that the track list belongs on the “back” of the case. But why is the cover art more
important than these controls? A task analysis would clearly show that adjusting the
volume or picking a particular track matters more than viewing the cover art.

And again, the designers ignore consistency with other desktop applications. It turns out
that not all the tracks on the CD are visible in the list. Could you tell right away? Where is
its scrollbar?

Haalci

ER I B

Total Play Thive-: T2:55

mouse over

We’re not done yet. Where is the online help for this interface?

First, the CD case must be open. You had to figure out how to do that yourself, without
help.

With the case open, if you move the mouse over the lower right corner of the cover art,
around the IBM logo, you’ll see some feedback. The corner of the page will seem to peel
back. Clicking on that corner will open the Help Browser.

The aspect of the metaphor in play here is the /iner notes included in a CD case. Removing
the liner notes booklet from a physical CD case is indeed a fiddly operation, and alas, the
designers of RealCD have managed to replicate that part of the experience pretty accurately.
But in a physical CD case, the liner notes usually contain lyrics or credits or goofy pictures
of the band, which aren’t at all important to the primary task of playing the music. RealCD
puts the instructions in this invisible, nearly unreachable, and probably undiscoverable
booklet.

This example has several lessons: first, that interface metaphors can be horribly misused;
and second, that the presence of a metaphor does not at all guarantee an “intuitive”, or easy
-to-learn, user interface. (There’s a third lesson too, unrelated to metaphor — that beautiful
graphic design doesn’t equal usability, and that graphic designers can be just as blind to
usability problems as programmers can.)

Fortunately, metaphor is not the only way to achieve learnability. In fact, it’s probably the
hardest way, fraught with the most pitfalls for the designer. In this lecture, we’ll look at
some other ways.

13

Microsoft Word

The spelling check is complete,

I\:E',r) Text set to (no proofing) was skipped. To find {ho proofing) text, click
Edit/Replace, click More, click Format, click Language and choose (ho

proofing).

Source: Interface Hall of Shame

When you're designing for learnability, you have to be aware of how people actually learn.
You can't assume that if the interface tells the user something, that the user will
immediately learn and remember it.

This dialog box is a great example of overreliance on the user’s memory. It’'s a modal dialog
box, so the user can’t start following its instructions until after clicking OK. But then the
instructions vanish from the screen, and the user is left to struggle to remember them. Just
because you've said it, doesn't mean they know it. (Incidentally, an obvious solution to
this problem would be a button that simply executes the instructions directly! This
message is clearly a last-minute patch for a usability problem.)

14

Consistency

» Similar things look and act similar

» Different things look and act 9 Cancel cument operation”?
different

» Consistency of wording, location, f
argument order, ...

» Internal consistency: within your Ul
External consistency: with other Uls

This Really Happened... [E3

Type mizmatch

Match the real world

» Use common words, not tech jargon

Recognition, not recall
» Labeled buttons are better than command languages

Source: Interface Hall of Shame

» Combo boxes are better than text boxes

In designing for learnability, the most important rule is consistency. This rule is often given the hifalutin’ name
the Principle of Least Surprise, which basically means that you shouldn’t surprise the user with the way a

command or interface object works. Similar things should look, and act, in similar ways. Conversely, different
things should be visibly different.

Consistency is important to lots of properties. One important kind of consistency is in wording. Use the same
terms throughout your user interface. If your interface says “share price” in one place, “stock price” in
another, and “stock quote” in a third, users will wonder whether these are three different things you’re
talking about.

There are three kinds of consistency you need to think about: internal consistency within your application, so
that things the user learns in one place can be carried over to other places; external consistency with other
applications on the same platform; and metaphorical consistency with your interface metaphor or similar
real-world objects.

The system should match the real world of the user’s experience as much as possible. Another way to say
this is “speak the user’s language.” If the user speaks English, then the interface should also speak English, not
Geekish. Technical jargon should be avoided. How might a user interpret the second dialog box shown
above? One poor user actually read type as a verb, and dutifully typed M-I-S-M-A-T-C-H every time this dialog
appeared. The user’s reaction makes perfect sense when you remember that most computer users do just
that, type, all day. But most programmers wouldn’t even think of reading the message that way. Yet another
example showing that You Are Not The User.

Technical jargon should only be used when it is specific to the application domain and the expected users are
domain experts. An interface designed for doctors shouldn’t dumb down medical terms.

Recognition is better than recall —i.e., if the user can operate your interface by recognizing the function they
want, rather than having to recall it from memory, then their learning burden is significantly reduced. Norman
(in The Design of Everyday Things) makes a useful distinction between knowledge in the head, which is hard
to get in there and still harder to recover, and knowledge in the world, which is far more accessible.
Knowledge in the head is what we usually think of as knowledge and memory. Knowledge in the world, on
the other hand, means not just documentation and button labels and signs, but also nonverbal features of a
system that constrain our actions or remind us of what to do. Command languages demand lots of knowledge
in the head, while GUI interfaces driven by buttons and menus rely on knowledge in the world.

15

Edit View Help

0.

— e e,
f=5
S
(%]
.
o
L)
L]
e Jd ek Jk ___J

2
—

We now turn to visibility — making the program's state visible to the user.

This is the Windows XP calculator. It looks and works just like a familiar desk calculator, a stable and widely-
copied interface that many people are familiar with. It’s a familiar metaphor, and trivial for calculator users to
pick up and use. Unfortunately it deviates from the metaphor in some small ways, largely because the
buttons are limited to text labels. The square root button is labeled “sqrt” rather than the root symbol. The
multiplication operator is * instead of X.

But this interface adheres to its metaphor so carefully that it passes up some tremendous opportunities to
improve on the desk calculator interface. Why only one line of display? A history, analogous to the paper
tape printed by some desk calculators, would cost almost nothing. Why only one memory slot? Why display
“M” instead of the actual number stored in memory? All these issues violate visibility. A more serious
violation of the same heuristic: the interface actually has invisible modes. When I’'m entering a number,
pressing a digit appends it to the number. But after | press an operator button, the next digit | press starts a
new number. There’s no visible feedback about what low-level mode I’'m in. Nor can | tell, once it’s time to
push the = button, what computation will actually be made.

(Incidentally, although this interface has good metaphorical consistency, so it's easy to learn for people
who've used a pocket calculator before, it's not easily learnable if you haven't. Most of the buttons are
cryptically worded, violating the principle "recognition, not recall". MC, MR, MS, and M+? What’s the
difference between CE and C? My first guess was that CE meant “Clear Error” (for divide-by-zero errors and
the like); some people in class suggested that it means “Clear Everything”. In fact, it means “Clear Entry”,
which just deletes the last number you entered without erasing the previous part of the computation. “C”
actually clears everything.

It turns out that this interface also lets you type numbers on the keyboard, but the interface doesn’t give a
hint about that possibility. In fact, in a study of experienced GUI users who were given an onscreen calculator
like this one to use, 13 of 24 never realized that they could use the keyboard instead of the mouse (Nielsen,
Usability Engineering, p. 61-62). One possible solution to this problem would be to make the display look
more like a text field, with a blinking cursor in it, implying “type here”. Text field appearance would also help
the Edit menu, which offers Copy and Paste commands without any obvious selection (external consistency).

16

% NOVADO - Mozilla

MOVADO

the art of time

57854

I 3 & B & | Trensfering

Suggested by Adam Champy

This is the home page for Movado, a company that makes expensive, stylish watches. The
little white dots at the top of the window are menu options. If you watched the opening
animation that precedes this screen, you’d see each menu label appear briefly over each dot.
But if you skipped over the intro, you wouldn’t see that, and you may not even realize that a
menu is hiding up there under those stylish white dots.

When you mouse over a dot, you actually have to wait for a cute little animation (a watch
hand sweeping around the dot) before the menu label appears. Each little animation takes 2
seconds. So scanning the entire menu to look at all the options takes 16 seconds!

Clearly this is even worse than MOMA’s approach, since it starts with an invisible menu
interface and makes it inefficient to boot. More tellingly, MOMA only cares about your
eyeballs, but Movado actually wants to sell you a watch. If you can’t figure out their menu,
or lose patience with it, you may be headed elsewhere.

One lesson you might draw from these examples is that Flash animation is bad, but that’s
too simplistic. Flash is a powerful tool that can be used for good or ill.

A better lesson might be that aesthetic appeal does not automatically confer usability.
Effective graphic design is an important element of usability, but it isn’t the whole story by
any means.

17

ORDER SUMMARY

Large (14") Brooklyn

Waiting for you to create an order!
2. CHOOSE TOPPINGS

CHEESE & SAUCE

Normal (w0
Nermsl (&

IAP 2010 6.470 IAP Web Programming Competition

Here’s the Domino’s Pizza build-your-own-pizza process. (You can try it yourself by going
to the Domino’s website and clicking Order to start an order; you’ll have to fill in an address
to get to the part we care about, the pizza-building Ul.)

Make system state visible
> keep the user informed about what's going on
» Mouse cursor, selection highlight, status bar

Give prompt feedback

» Response time rules-of-thumb
< 0.l sec seems instantaneous
0.1-1 sec user notices, but no feedback needed
I-5 sec display busy cursor
> |-5sec display progress bar

Keep the user informed about what’s going on. We’ve developed lots of idioms for
feedback in graphical user interfaces. Use them:

eChange the cursor to indicate possible actions (e.g. hand over a hyperlink), modes (e.g.
drag/drop), and activity (hourglass).

eUse highlights to show selected objects. Don’t leave selections implicit.

eUse the status bar for messages and progress indicators.

Depending on how long an operation takes, you may need different amounts of feedback.

Even though we say “no feedback needed” if the operation takes less than a second,
remember that something should change, visibly, within 100 ms, or perceptual fusion will
be disrupted.

19

* Sunset.jpg-3.0 (RGB) 50% CEIx

Filters
Media
Yideo

FoN_ Script-Fu - | L+
| [Bunset jng-3.0 (RGE) 50% |J

Jram om

Efficiency concerns how quickly an expert user can operate the system — submitting input
or commands, and perceiving and processing the system's output. Note that this is
typically not about the performance of the program's algorithms at all — instead, it's about
the performance of the I/O channel between the user and the program. A user interface
that requires fewer keystrokes to do a task is more efficient. The problem of efficiency is
more subtle than just counting keystrokes, however.

Recall the example of Gimp from the start of this lecture. All Gimp menus are accessed
from a context menu, which pops up on right-click. You don't have to move your mouse up
to the menu bar — a context menu can be popped up anywhere. So it should be faster.
Right?

Wrong. With Gimp’s design, as soon as the mouse hovers over a choice on the context
menu (like File or Edit), the submenu immediately pops up to the right. That means, if |
want to reach an option on the File menu, | have to move my mouse carefully to the right,
staying within the File choice, until it reaches the File submenu. If my mouse ever strays
into the Edit item, the File menu I’'m aiming for vanishes, replaced by the Edit menu. So if |
want to select File/Quit, | can’t just drag my mouse in a straight line from File to Quit — |
have to drive into the File menu, turn 90 degrees and then drive down to Quit! Cascading
submenus are actually slower to use than a menu bar. Gimp’s designers made a choice
without fully considering how it interacted with human capabilities.

20

How long does it take to reach a target?
» Moving mouse to target on screen

» Moving finger to key on keyboard

» Moving hand between keyboard and mouse

D

- - Y _

T =RT +MT =a +b log (D/S)
> log(D/S) is the index of difficulty of the pointing task

Let's look at some facts about the human motor processing system, because this will help us
understand just how bad the cascading submenu problem is.

In simplified form, the human cognitive system is a feedback loop: your senses feed stimuli into
your brain, your brain processes those stimuli, and your brain instructs your muscles to do
something. Then your senses perceive the effect your muscles had on the world, and your brain
can adjust what the muscles are doing to correct for errors. We rely on this feedback loop to walk,
catch a ball, draw a straight line, put food in our mouths, and do almost everything we do.

Let’s consider a common motor task in user interfaces: pointing at a target of a certain size at a
certain distance away (within arm’s length). The time it takes to do this task is governed by a
relationship called Fitts’s Law. It’s a fundamental law of the human sensory-motor system, which
has been replicated by numerous studies. Fitts’s Law applies equally well to using a mouse to point
at a target on a screen, putting your finger on a keyboard key, or moving your hand between
keyboard and mouse.

We can derive Fitts’s Law from a simple model of the human motor system. In each cycle, your
motor system instructs your hand to move the entire remaining distance D. The accuracy of that
motion is proportional to the distance moved, so your hand gets within some error €D of the target
(possibly undershooting, possibly overshooting). Your eyes perceive where your hand arrived and
compare it to the target, and then your motor system issues a correction to move the remaining
distance €D — which it does, but again with proportional error, so your hand is now within 2D of the
target. This process repeats, with the error decreasing geometrically, until n iterations of the
feedback loop have brought your hand within the target —i.e., €"D < S. Solving for the number of
cycles n, and assuming the total time T is proportional to n, we get:

T=a+blog(D/S)
for some constants a and b.

21

Pointing vs. steering
» Fitts’s Law applies only if path to target is unconstrained

» But the task is much harder if path is constrained to a tunnel

=

T=a+b (DIS)

Relationship is linear, not logarithmic
» The index of difficulty is D/S for steering, but log(D/S) for pointing
» This is why cascading menus are slow!

We can also see why cascading submenus like Gimp’s are hard to use, because of the
correction cycles the user is forced to spend getting the mouse pointer carefully over into
the submenu. Because the user must keep the mouse inside the menu tunnel, they must
move it slowly enough so that the error of each cycle (ed where d is the distance moved in
that cycle) is always less than S. Thus the distance of each cycle is d<=S/¢, and so the total
number of cycles is proportional to D/S. That’s a lot slower than the log(D/S) in Fitts’s Law,
which applies to unconstrained pointing —in fact, it’s exponentially slower!

Gimp offers the worst possible behavior here, by making the submenu disappear as soon as
the mouse pointer exits the tunnel. Microsoft Windows does it a little better — you have to
hover over a choice for about half a second before the submenu appears, so if you veer off
course briefly, you won'’t lose your target. But now we know a reason that this solution isn’t
ideal: it exceeds Tp, so it destroys perceptual fusion and our sense of causality. And you still
have to make that right-angle turn to get into the menu.

Apple Macintosh does even better: when a submenu opens, there’s a triangular zone,
spreading from the mouse to the submenu, in which the mouse pointer can move without
losing the submenu. The user can point straight to the submenu without unusual
corrections, and without even noticing that there might be a problem.

22

Fitts's Law and Steering Law
» Make important targets big, nearby, or at screen edges

» Avoid steering tasks

Provide shortcuts

» Keyboard accelerators

> Styles 1%0LY0 DOC

> Bookmarks 2 C:ADOCUMENTACLERICALYRESUME DOC
3 C:ADOCUMENTACLERICALYBUSCARD. DOC

> History 4 CADOCUMENTACONTACTS DOC

E xit

Source: Interface Hall of Shame

What we've learned leads to some useful principles for making interfaces more efficient.

Fitts’s Law has some interesting implications. The edge of the screen stops the mouse
pointer, so you don’t need a correcting cycle to hit it. Essentially, the edge of the screen
acts like a target with infinite size. So edge-of-screen real estate is precious. The Macintosh
menu bar, positioned at the top of the screen, is faster to use than a Windows menu bar
(which, even when a window is maximized, is displaced by the title bar). So if you put
controls at the edges of the screen, they should be active all the way to the edge to take
advantage of this effect. Don’t put an unclickable margin beside them.

In general, if you know that a button or control will be frequently used, then you should
exploit Fitts’s Law in your design of that control — make it bigger, or anchor it to the edge of
the screen so that its size is effectively huge. If two buttons are frequently used together,
put them close to each other. Minimize steering tasks as much as possible.

Another way to improve efficiency is by providing shortcuts that expert users can learn and
apply to maximize their bandwidth. Keyboard combinations are a good example of this.
(But be sure to strive for learnability too! If your shortcuts are too hard to learn and
remember, then users won't get any benefit from them.)

Another incredibly useful kind of shortcut is a history. The recently-used files menu is a
good example of this. Since users often reopen a file that they recently used, providing this
history list saves them from navigating through the filesystem. Histories can be used all
over an interface to save time and typing.

23

) MIT Webmail - Mozilla Firefox BE®
fie Edt Vew Go Bookmarks Tooks Hep

—
@ - - & 2} | = ntps:/jwebmat.mit.edunorcejimpmaibox.phpzna_newmai_poy (3| @ o [[GL

Command: Directory: =

MIT WebMail

An email service from Information Services & Technology

= = = ° v] ®K G d =
Inbox| Compose Folders Search Filters Address Book Options Help Log out Open Folder

Quota status: 0.01MB / 500.00MB (0.00%)

Sentpg o

1 to 6 of 6 Messages

Select + || Mark as

+ Move | Copy | llessages to v

Delete | Undelete | Denylist | Allowlist | Forward

Done

Hide Deleted | Purge Deleted

] v # v Date ¥ From ¥ Subject [Thre=4] ¥ Size
@' g 05272008 Torom@csailmitedy testing 7

5 05/27/2005 To:rcm@csailmitedu testing again

Vi 4 05/27/2005 To:rcmiller@gmail.com testing 4

] 3 08/27/2005 To: rcm@gmail.com testing 3

(] 2 |05/27/2005 To:rcm@csailmitedu testing 2

] 1 05/27/2005 To:rcm@csail.mitedu testing kG

webmail.mit.edu (%)

rogramming Competition

Our fourth goal is error handling. Users make errors; you have to anticipate them, prevent
them as much as possible, and deal with them well when they do happen.

Here's an example of a tricky kind of error created by the keyboard shortcuts in Mozilla
Firefox and MIT Webmail. The Alt-D shortcut does different things depending on the state
you'rein:

- if you’re browsing any other web site with Firefox, Alt-D puts the keyboard focus on the
address bar, so you can type a URL.

- but if you’re looking at a folder in MIT Webmail, Alt-D deletes the messages you’ve
selected.

- if you’re looking at a message in MIT Webmail, Alt-D normally deletes the message —
which at least is consistent with the folder view.

- but if you’re looking at an already deleted message in MIT Webmail, then the Delete
command is missing —and Alt-D now invokes the Denylist command — which adds the

sender of this message to a list of people whose messages get filtered out.

It's easy to see how a user habituated to expect a certain behavior from Alt-D can make
serious errors here! If you press Alt-D thinking it will put the focus on the address bar, but
it actually deletes an email message, then you've made a mode error.

(Thanks to InHan Kang for this example.)

24

Modes: states in which actions have different meanings
» Vi's insert mode vs. command mode
» Drawing palette

Avoiding mode errors 7 @
» Eliminate modes entirely 2 Q
» Visibility of mode

» Spring-loaded or temporary modes

» Disjoint action sets in different modes

Modes are states of the system in which the same action has different meanings. For example, when Caps
Lock mode is enabled on a keyboard, the letter keys produce uppercase letters. The text editor vi is famous
for its modes: in insert mode, letter keys are inserted into your text file, while in command mode (the
default), the letter keys invoke editing commands.

Mode errors occur when the user tries to invoke an action that doesn’t have the desired effect in the current
mode. For example, if the user means to type lowercase letters but doesn’t notice that Caps Lock is enabled,
then a mode error occurs.

There are many ways to avoid or mitigate mode errors. Eliminating the modes entirely is best, although not
always possible. When modes are necessary, it’s essential to make the mode visible. But visibility is a much
harder problem for mode status than it is for affordances. When mode errors occur, the user isn’t actively
looking for the mode, like they might actively look for a control. As a result, mode status indicators must be
visible in the user’s locus of attention. That’s why the Caps Lock light, which displays the status of the Caps
Lock mode on a keyboard, doesn’t really work. (Raskin, The Humane Interface, 2000 has a good discussion of
locus of attention as it relates to mode visibility.)

Other solutions are spring-loaded or temporary modes. With a spring-loaded mode, the user has to do
something active to stay in the alternate mode, essentially eliminating the chance that they’ll forget what
mode they’re in. The Shift key is a spring-loaded version of the uppercase mode. Drag-and-drop is another
spring-loaded mode; you’re only dragging as long as you hold down the mouse button. Temporary modes are
similarly short-term. For example, in many graphics programs, when you select a drawing object like a
rectangle or line from the palette, that drawing mode is active only for one mouse gesture. Once you’ve
drawn one rectangle, the mode automatically reverts to ordinary pointer selection.

Finally, you can also mitigate the effects of mode errors by designing action sets so that no two modes share
any actions. Mode errors may still occur, when the user invokes an action in the wrong mode, but the action
can simply be ignored rather than triggering any undesired effect. (Although then, you might ask, why have
two modes in the first place?)

25

>

ﬂ E‘ , - Fearch Favarites 54

—

Address | @] http:fflacalhostfConfirmation3, aspx w a Go

Eeservoir Dogs [Delete

Pulp Fiction I Delete

Matural Born Killer=== .

. T ETET Microsoft Internet Explorer
12 Monkeys
?/ Are you sure you want to delete Natural Born Killers?
[Ok I [Cancel

& Done %.J Local intranet

An unfortunately common strategy for error prevention is the confirmation dialog, or “Are
you sure?” dialog. It’s not a good approach, and should be used only sparingly, for several
reasons:

Confirmation dialogs can substantially reduce the efficiency of the interface. In the
example above, a confirmation dialog pops up whenever the user deletes something,
forcing the user to make two button presses for every delete, instead of just one. Frequent
commands should avoid confirmations.

If a confirmation dialog is frequently seen — for example, every time the Delete button is
pressed — then the expert users will learn to expect it, and will start to chunk it as part of
the operation. In other words, to delete something, the user will learn to push Delete and
then OK, without reading or even thinking about the confirmation dialog! The dialog has
then completely lost its effectiveness, serving only to slow down the interface without
actually preventing any errors.

In general, reversibility (i.e. undo) is a far better solution than confirmation. Even a web
interface can provide at least single-level undo (undoing the last operation). Operations
that are very hard to reverse may deserve confirmation, however. For example, quitting an
application with unsaved work is hard to undo — but a well-designed application could
make even this undoable, using automatic save or keeping unsaved drafts in a special
directory.

26

Prevent errors as much as possible

> Selection is better than typing ; B e oo |
» Avoid mode errors L
» Disable illegal commands
» Separate risky commands from common ones ind an Excel i

. . . zalled camer o HEN
Use confirmation dialogs sparingly ' z=only: &

s well.
Select Al

Support undO s the last dataset.?c?;w O de
Good error messages
» Precise |
R Cancel Help |
» Polite

Click this to display an overview of this dislog box, idiat

» Constructive help

For Help on anitem, click ¥ at the top of the dialog box, and
then click the item.

Source: Interface Hall of Shame

One way to prevent errors is to allow users to select rather type. Misspellings then become
impossible.

If a command is illegal in the current state of the interface — e.g., Copy is impossible if
nothing is selected — then the command should be disabled (“grayed out”) so that it simply
can’t be selected in the first place.

You can also reduce errors by making sure that dangerous functions (hard to recover from if
invoked accidentally) are well-separated from frequently-used commands. Outlook 2003
makes this mistake: when you right-click on an email attachment, you get a menu that
mixes common commands (Open, Save As) with less common and less recoverable ones — if
you print that big file by mistake, you can’t get the paper back. And if you Remove the
attachment, it’s even worse — undo won'’t bring it back! (Thanks to Amir Karger for this
example.)

If you can’t prevent the error, at least give a good error message. A good error message
should (1) be precise; (2) speak the user’s language, avoiding technical terms and details
unless explicitly requested; (3) give constructive help; and (4) be polite. The message
should be worded to take as much blame as possible away from the user and heap the
blame instead on the system. Save the user’s face; don’t worry about the computer’s. The
computer doesn’t feel it, and in many cases it is the interface’s fault anyway for not finding
a way to prevent the error in the first place.

The tooltip shown here came from a production version of AutoCad! As the story goes, it
was inserted by a programmer as a joke, but somehow never removed before release.

27

System IntoTaton \ Board bat: eacr hoard Is & set of colrng User vus

- * =
BR Fiteituinic g, ol 43 (193] 3 5: 00T B if/ HEBIHIENE) > X
eyt - e <) Aclive Lulurmn \J B[]
Wor< Colurn < = / .
REE co.u 2y i s it (51 L () KLs (71 Duwiuads (3) Svuniles i) Backup (10) ¥
Pragans (1) Th Eo—) i o = A 2
21 2 Thz fixed &tirib Jte deserm nes 10w the column contert movs to 12t it | s 29 30
Fi Wl | Th wh Part iy] Fiy V\ﬂd Fxm Part iy<l th)/ Wed “homh Fat Syt A-Ha - Crying in the rainmp?
Loc Loc Myt Prey fed #lghavile - Dig In Jepar s
Cosiart | Tharis 7 diep ared ovvon T~ b 1+ e [S e ?F;E::‘;c'::g rol
(D Fietatrix = ena [@wayzzemTools & ANIGLE - Dnsta Linata. s
@uks e i [Files are sorted Ly(pe: directories, lirks, pragrams dccunevts E- d
(D Raflexology i
(D SexuslZducat t4 Inac:Ke fle }t

@ el);/ / k.

453, o k.

F Miepdeic. 5 on] e

& FrutPaye.du . m A .
B rrenteagetiack. doc Serdme. meman ul ur
. SangeFlayl sk rp mpl

u Cerre Lion- My Hear: w\lu)ow
CHARIFS SHAW - GrlYur Know T

Sy Mext Rand [FRepest
Pause Prev Clp [_rit

=
| Erag up 31 Sew 15 change e et of e viever jn

* ¥OU MUST READ thx icn:c te
acrcider you have a licknae (rege tJ rermatior akou acty 2partion, dirzeta 12, 11K tardet | o
Hles 2 Eraryoted J Seluun U seleUl lotabe 3.5 M5 | Pertoz b8 63314 B PatALY CEQpEst
Incex13 =z LoKB(UB) Attr & HLD 5CJ Itle z:\Progran Hiesi-ieMatricizdit. bk ‘ Moc sundey, May)8, 2UUS (1351 11:28:58 P (54
Tesr "The Fargat pracram is iserd by ke “Frit” hiaekinn® Ifyoswanl to sotyour prajects and nates by
TyneP S 19NKRIN AbrA Tifle Frifvagram FilesWindrus NT Arressrvisdiwnrdrat.me Mnd Thiveday, Augi ot HME, Carge the sCri made fo° 2ach calLrr

locatz beacy | Kecyde Lekte Gosevewer ML cptors W L) 3 3 3 3 Nane 4 o
current fle “E:Frogra ﬂ\; \ﬂ\ Haup\mt Ink", [DoLbIe LMB] = Run (rum auomove to left [SHft] = au:coen ta right’ [AL = auto?hd) [RIB] = vigw, [MNE] = Edk.
(U481 Drag] = Fils dcyrenu. [RIMB 1 rag] = 3ot ity sou ‘”;'h Set tha numaer of calmms, for eaca koard | | Setthe height of hubs

| | nUl:ar | I-nE hint kar showss hiRtSTor cotrols v er which 19e mouse IS mﬂV91| GWICK chanqeto arew Sa ancolcrs ‘

Source: Alex Papadimoulis

The final design principle is a catch-all for a number of rules of good design, which really
boil down to one word: simplicity.

This is a program called FileMatrix. | have no idea what it does, but it seems to do it all.
The complexity of this interface actually interferes with a lot of our usability goals: it's less
learnable (because there are so many things you have to learn), less efficient (because
cramming all the functions into the window means that each button is tiny), and more
error-prone (because so many things look alike).

Incidentally, this may be a good example of designing for yourself, rather than for others.
The programmer who wrote this probably understands it completely, and maybe even uses
a significant fraction of those features; but few other users will need that much, and it will
just interfere with their ability to use it.

28

Google

m Images Groups Directory News

- Advanced Search

[Google Search][I'm Feeling Lucky] LSFELEQZE;:CB

Advertise with Us - Business Solutions - Senices & Tools - Jobs. Press, & Help

©2002 Google - Searching 3,307,998,701 web pages

In contrast to the previous example, here’s Google’s start page. Google is an outstanding
example of simplicity. Its interface is as simple as possible. Unnecessary features and
hyperlinks are omitted, lots of whitespace is used. Google is fast to load and trivial to use.

29

“Less is More”’

» Omit extraneous information,
graphics, features

Good graphic design

» Few, well-chosen colors and fonts

» Group with whitespace
Use concise language

» Choose labels carefully @gg
MEFEIEREIREER

- 10
QUOTES!

EREEIC
3| <]

The way to achieve simplicity is by relentless reduction of your design. Leave things out
unless you have good reason to include them. Don’t put more help text on your main
window than what’s really necessary. Leave out extraneous graphics. Most important,
leave out unnecessary features. If a feature is never used, there’s no reason for it to
complicate your interface. Google offers a great positive example of the less-is-more
philosophy.

Use few, well-chosen colors. The toolbars at the top show the difference between cluttered
and minimalist color design. The first toolbar is full of many saturated colors. It’s not only
gaudy and distracting, but actually hard to scan. The second toolbar, from Microsoft Office,
uses only a handful of colors — black, white, gray, blue, yellow. It’s muted, calming, and the
few colors are used to great effect to distinguish the icons. The whitespace separating icon
groups helps a lot too.

30

Title: HCI Bibliographv : Human-Computer Interaction / User Interface ...

Summary: The HCI Bibliographv (HCIBIB) is a free-access bibliography on Human-Computer
Interaction, with over 20000 records in a searchable database. ... Learn about HCL. ...

Kevwords: HCI

URL: www heibib org

Size: 14k

HCI Bibliography : Human-Computer Interaction / User Interface ...

The HCI Bibliography (HCIBIB} is a free-access bibliography on Human-Computer Interaction
with aver 20000 records in a searchable database. ... Learn about HCI ...

www.hcibib.orgf - 14k - Cached - Similar pag

Human-Computer Interaction Resources an the Net
... This 1s a collection of information related to Human-Computer Interaction {(HCI). ...
Collections of resources for HCI researchers and practitioners. ...

www ida_liu_seflabs/aslab/groups/um/hci/ - 9k - Cached - Similar pages

Here’s another example showing how redundant encoding can make an information display
easier to scan and easier to use. Search engine results are basically just database records,
but they aren’t rendered in a simplistic caption/field display like the one shown on top.
Instead, they use rich visual variables — and no field labels! — to enhance the contrast among
the items. Page titles convey the most information, so they use size, hue, and value
(brightness), plus a little shape (the underline). The summary is in black for good
readability, and the URL and size are in green to bracket the summary.

Take a lesson from this: your program’s output displays do not have to be arranged like
input forms. When data is self-describing, like names and dates, let it describe itself. (This
is yet another example of the double duty technique for achieving greater simplicity — data
is acting as its own label.) And choose good visual variables to enhance the contrast of
information that the user needs to see at a glance.

31

Patterns are good solutions to common problems

» Breadcrumbs Travel > Guldes > North America
. . Results Page:
> Pagination 1234587883100 Next

us.

Businass W

» Tabs

Photes Opinicn Local News Odd N

> Autocomplete ot

cc Yahoo Ul Blogger <ywiblogger@yahoo.com>
Yusef Jones <yusef@somewhere.com>

Subject: | Yusef Smith <yusefs@someplace.org>

Pattern repositories
Yahoo Design Pattern Library
http://developer.yahoo.com/ypatterns/

Welie.com
http://www.welie.com/patterns/

32

3. Evaluate 2. Implement

user teSting Sketching
low-fidelity prototypes

So we’ve talked about design principles, and you’ve developed a design. Now let’s think
about how to implement it cheaply.

Paper is a very fast and effective design tool
» Sketch windows, menus, dialogs, widgets

» Crank out lots of designs and evaluate them

Hand-sketching is OK - even preferable

» Focus on behavior & interaction, not fonts & colors

It turns out that paper is a terrific prototyping tool. If you sit down and write Java code for
your Ul without having drawn a sketch first, you’re letting Java design the Ul for you. Not
good. Always sketch it on paper first.

34

Home Page
— PN, - Grioker) 2905
Yowr Classes i Nt l*_;___\-a\ e
lor Cigai) | (G 00| Gateil) (ea) |77 e—
) Tusks | Mok Austormed: P33 (cdm) sk bl U1
< Hone fuse. Nast Tt ? Quiz 3 [us) Femcny Piehi S
- Nk Classy
«Calendar 503
* Gettings L0
ot
L Class
ew nows o mgsoanmatrts dus o A Clees T -
: g ke TAdd New Clas
i ! Buvc Oekails | _
|LT Mondery 1> P | Subspet Wambert [|
| Gmor oet2 G Gapen > | Sbjeat Mt [T
e T s VR E—
L2 '“ms&«z 3 e Py ST VS we——
oo ———! < AdL cless o 7
(B e = + Calentans
B Thos o .mt.,}s
Contie)

Here are some nice examples of design sketches from an earlier 6.831 class. These are
alternative designs (left and right) for key pages of a grade management web site. Notice
the sketchiness, the handwritten labels. But these sketches have some realistic data in them,
which is a good idea, but if you find that coming up with fake data inhibits your thought
process, you can often use squiggles for the data too.

SWIFT SHOPPER

v prelichaviotaibiig
s “Finda
Find an Item Section of

the Store

Find Sale

Your drawings should be done by hand. For most people, hand-sketching on paper is much
faster than using a drawing program. Further, hand sketches in particular are valuable
because they focus attention on the issues that matter in early design, without distracting
you with details like font, color, alignment, whitespace, etc. In a drawing program, you
would be faced with all these decisions, and you might spend a lot of time on them — time
that would clearly be wasted if you have to throw away this design. Hand sketching also
improves the feedback you get from users. They’re less likely to nitpick about details that
aren’t relevant at this stage. They won’t complain about the color scheme if there isn’t one.
More important, however, a hand-sketch design seems less finished, less set in stone, and
more open to suggestions and improvements. Architects have known about this
phenomenon for many years. If they show clean CAD drawings to their clients in the early
design discussions, the clients are less able to discuss needs and requirements that may
require radical changes in the design. In fact, many CAD tools have an option for rendering
drawings with a “sketchy” look for precisely this reason.

Here’s a comparison of two early-design sketches made for the same project. The hand
-sketch on the left focuses on what you care about in the early stage of design — e.g., what
buttons need to be on this screen? The one on the right probably took longer to draw, and
it’s full of distracting details. I have trouble looking at it without thinking, “do I really like
the SWIFT SHOPPER title shown that way?” Detailed graphic design simply isn’t relevant
at this stage of design, so don’t use tools that focus your attention on it.

36

Search: (Madrid — “Loen mé,.;}u_
e e i | 18 =

‘ . ¥ [a"2]"e]
Taghm g i |

It’s important to brainstorm radically different design alternatives, and put them down in
sketches. Here’s an example from an application for plotting trip photos on a map. An
important task of the problem was assigning geographical locations to photos you’d taken.
These sketches show two significantly different alternatives for this task — one using a map
to select a location and checkboxes to associate a subset of photos with that location, and
the other using a list of locations (which can be edited on a separate screen) and color-coded

highlighting to associate locations with photos.

Sketching multiple alternatives gives you the ability to talk about them with your
teammates, to discuss the pros and cons, to mix and match and build on them.

37

Paper sketches first!
Then static HTML + CSS wireframe

> Include some example data
» Experiment with styling and layout without generating it dynamically

Then dynamic page generated by PHP or Javascript

38

3. Evaluate

user testing

IAP 2010 6.470 IAP Web Programming Competition

Now that you’ve implemented a design as a prototype, it’s time to evaluate it.

Start with a prototype
Write up a few representative tasks
» Short, but not trivial

> e.g.. “add this meeting to calendar”,
“type this letter and print it”

Find a few representative users
» 3 is often enough to find obvious problems

Watch them do tasks with the prototype

User testing is the gold standard for evaluating a user interface. Since it’s hard to predict
how a typical user will respond to an interface, the best way to learn is to actually find
some typical users, put them in front of your interface, and watch what happens.

You don’t need to have a finished implementation to do user testing. A paper prototype is
enough to test, and it’s so easy to build (relative to code) that paper prototypes are often
the first version of your interface that you test on users.

A good user test shouldn’t be undirected. Don’t just plop a user down and say “try this
interface”. You should prepare some representative tasks that are appropriate to your
interface. Pick tasks that are common, tasks that should be easy, and tasks that you're
worried may be hard. Make the tasks short (if possible), but not trivial. Make each task
concrete (e.g., “schedule a meeting for 3pm this Wednesday”), but don’t provide specific
instructions on how to do it.

Once you have your tasks, find some users that are representative of your target user
population. Needless to say, don’t use people from the development team, even if they
happen to fall in the target user population. They know too much about the underlying
system, so they’re not typical users. A handful of users is usually enough for feedback
about obvious usability problems. (If you wanted to measure some quantitative
improvement due to your design, however, you’d need many more users, and you’d need to
carefully design the testing.)

40

Brief the user first (being a test user is stressful)
» “I'm testing the system, not testing you”

> “If you have trouble, it's the system’s fault”

> “Feel free to quit at any time”

» Ethical issues: informed consent

Ask user to think aloud

Be quiet!

» Don’t help, don’t explain, don’t point out mistakes
» Sit on your hands if it helps

» Two exceptions: prod user to think aloud (“what are you thinking now?”),
and move on to next task when stuck

Take lots of notes

Once you have your tasks and your users, the final step is simple: watch what happens. This is harder than it
sounds.

First, being a test user is stressful for most people. There’s a tendency to feel like a subject of an intelligence
test. If they can’t figure out how to use your interface, they may feel like they’ve failed. You need to be aware
of this phenomenon, and take steps in advance to ward it off. When you brief a user before a test, make very
clear that the goal of the test is to uncover problems in the computer program. Anything that goes wrong is
the interface’s fault, not the user’s. Assure them that they can quit the test at any time.

User studies conducted in connection with MIT research should also be cognizant of the ethical issues
surrounding use of human subjects. MIT policies treat the user of humans in software user studies identically
with their use in psychology experiments, drug trials, and studies of new medical procedures. You have to
obtain approval for a research user study from MIT’s Committee on the Use of Humans as Experimental
Subjects (COUHES).

While the user is actually using your interface, encourage them to think aloud: verbalize what they’re
thinking as they use the interface. Encourage them to say things like “OK, now I’'m looking for the place to set
the font size, usually it’s on the toolbar, nope, hmm, maybe the Format menu...” Thinking aloud gives you (the
observer) a window into their thought processes, so you can understand what they’re trying to do and what
they expect. Thinking aloud can be hard to do, particularly when the user gets absorbed in the task.
Sometimes you have to nudge the user a little: “what are you thinking now?” “Why did you look there?”

While the user is talking, you, as the observer, should be doing the opposite: keeping quiet. Don’t offer any
help, don’t attempt to explain the interface. Just sit on your hands, bite your tongue, and watch. You're
trying to get a glimpse of how a typical user will interact with the interface. Since a typical user won’t have
the system'’s designer sitting next to them, you have to minimize your effect on the situation. It may be very
hard for you to sit and watch someone struggle with a task, when the solution seems so obvious to you, but
that’s how you learn the usability problems in your interface.

You have only two excuses for opening your mouth during a user test: first, to prod the user to think aloud,
and second, to move the user along to another task if they really get stuck.

Keep yourself busy by taking a lot of notes.

41

Critical incidents: events that strongly affect task
performance or satisfaction

Usually negative

» Errors

» Repeated attempts

» Curses

Can also be positive

» “Cool!”

» “Oh, now | see.”

What should you take notes about? As much as you can, but focus particularly on critical
incidents, which are moments that strongly affect usability, either in task performance
(efficiency or error rate) or in the user’s satisfaction. Most critical incidents are negative.
Pressing the wrong button is a critical incident. So is repeatedly trying the same feature to
accomplish a task. Users may draw attention to the critical incidents with their think-aloud,
with comments like “why did it do that?” or “@%!@#S!” Critical incidents can also be
positive, of course. You should note down these pleasant surprises too.

Critical incidents give you a list of potential usability problems that you should focus on in
the next round of iterative design.

42

You are not the user

Keep human capabilities and design principles in mind
Iterate over your design

Make cheap, throw-away prototypes

Evaluate them with users

43

General books on usability

» Johnson. GUI Bloopers: Don’ts and Dos for Software Developers and Web
Designers, Morgan Kaufmann, 2000.

» Jef Raskin, The Humane Interface, Addison-Wesley 2000.
» Hix & Hartson, Developing User Interfaces,Wiley 1995.

Low-fidelity prototyping
» Rettig, “Prototyping for Tiny Fingers”, CACM April 1994.

Usability heuristics

» Nielsen, “Heuristic Evaluation.” http://www.useit.com/papers/heuristic/

» Tognazzini, “First Principles.”
http://www.asktog.com/basics/firstPrinciples.html

44

