Introduction to Server-Side Programming

64755

"lir WEB PROGRI\mmInE CUITIPETITIOI‘I

Overview
I
1. Basics of HTTP
2. PHP syntax
3. Server-side programming

4. Connecting to MySQL

Request to a Static Site
L

Server:
1. Homepage

lookup
2. Send as HTTP
Response

HTTP Request: GET www.xkcd.com

ammmmm—— ...

HTTP Response: web content (HTML file) IP: 72.26.203.99
Client-side code: HTML, CSS, JavaScript

You (client)

Request to a Dynamic Site
L

O The server must respond dynamically if it needs to provide
different client-side code depending on the situation

O Date and time
O Specifics of the user’s request

O Database contents — forms and authentication

Server:

1. Look up things that go on
user’s profile, such as
wall posts and friends =

HTTP Request: GET www.facebook.com

—
=

X

= ::acltles, database
You (client) Web server ooKuPs .
2. Generate client-side
HTTP Response: web content (HTML file) code containing these

things

Client-side code: HTML, CSS, JavaScript
3. Send as HTTP response

(dynamically generated by server)

sample http interactions

P

Headers | Content

Request URL: http://www.google.com/search?client=safari&rls=en&qg=photography&ie=UTF-B&«
Request Method: GET
Status Code: & 200 0K

¥ Request Headers view source

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/%;q=0.8
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_6_8) AppleWebKit/534.50 (KHTML,
.1 Safari/534.50

¥ Query String Parameters view URL encoded

client: safari

ris: en

g: photography .

je: UTF-8 > GET, data passed as query string

oe: UTF-8
¥ Response Headers view source

Cache-Control: private, max-age=0
Content-Encoding: gz1ip

Content-Type: text/html; charset=UTF-8
Date: Mon, 17 Oct 2011 01:13:54 GMT
Expires: -1

Server: gws

Transfer-Encoding: Identity
X-Xss-Protection: 1; mode=block

sample http interactions

.“.,"“ [-1
" | Headers | Content

i

Request URL: http://travel.travelocity.com/flights/InitialSearch.do
Request Method: POST
Status Code: @ 200 0K
¥ Request Headers view source
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%*/%;q=0.8
Content-Type: application/x-www-form-urlencoded
Origin: http://www.travelocity.com
Referer: http://www.travelocity.com/472d
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_6_8) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari
/534.50
¥ Form Data view URL encoded

Service: TRAVELOCITY
last_pgd_page: ushpnbff.pgd
entryPoint: FD

pkg_type: fh_pkg

flightType: roundtrip
subnav: form-fo
leavingFrom: boston
goingTo: london
dateTypeSelect: exactDates
leavingDate: mm/dd/yyyy
dateLeavingTime: Anytime
departDateFlexibility: 1
departure_dt: Oct
returningDate: mm/dd/yyyy
dateLeavingTime: Anytime
returnDateFlexibility: 1
arrival_dt: Feb

adults: 1
children: @
seniors: @
minorsAge0:
minorsAgel:
minorsAge2:
minorsAge3:
minorsAge4: ?

PR RPN

> POST, data passed as form data

¥ Response Headers view source
Connection: close
Content-Encoding: gzip
Content-Type: text/html;charset=UTF-8
Date: Mon, 17 Oct 2011 01:20:44 GMT

http methods

idempotent all

safe PUT
GET DELETE
HEAD
POST

» safe: no side effects

>

>

>

>
>

-

idempotent: doing twice same as once

" vs POST: PUT typically names a created object

5

" & DELETE used in APIs but not usually in browsers

response status codes

categories of codes
> 1xx informational
> 2XX success

> 3xx redirect

> 4xx client error

> SXX server error

most common codes

> 200 OK (request succeeded, resource is in message body)
> 404 Not Found (resource doesn't exist)

> 303 See Other (resource moved, see location header)

> 500 Server Error (web app implementer messed up)

Server-side options

I
0 PHP — today

O Easy to start, lower learning curve

O Potentially messy as your site grows

O Javascript frameworks — node.js and Meteor.js

0 Ruby on Rails

0 Other options — Django, Flask, Sinatra...

PHP

Introduction and Basic Syntax

64755

"lir WEB PROGRI\mmmE CUITIPETITIOI‘I

What is PHP?

0 PHP = PHP: Hypertext Preprocessor

O Server-side scripting language that may be
embedded into HTML

0 Ultimate goal is to get PHP files to generate client-
side code

O must end up with HTML, CSS, JavaScript, other client-
side codel

Side-by-side
N

PHP File:

<html>
<head>

<title> PHP Introduction </title>

</head>
<body>

This is HTML!

<?php
echo
?>
</body>
</html>

'This is PHP!
';

Output: resulting HTML

<html>

<head>

<title> PHP Introduction </title>
</head>

<body>

This is HTML!

This is PHP!
</body>
</html>

A closer look
I 5

<html>
<head>
<title> PHP Introduction </title>
</head>
<body>
This is HTML!

<?php
echo 'This is PHP!
'; // prints to screen
/*
Here's a longer
comment
that spans multiple
lines.
*/
?>
</body>
</html>

0 PHP tags: <?php and ?>
0 The echo command

0 Single line comment (//)

m

Multiple line comment (/* and */)

Viewing PHP files
T

0O PHP files executed on the web server

O Save .php files in subdirectory of web server
O /var/www/ on many Linux configurations

O web_scripts directory of your user directory on Athena

0 Make call to web server via domain name
(google.com), IP address (72.26.203.99), or localhost
if on your own computer

PHP

Syntax: Variables, Operators, and Strings

64755

"lir WEB PROGRI\mmInE CUITIPETITIOI‘I

Variables
I

O Store values for future reference, use variable name
to refer to the value stored in it

Sx = 42; // store the value 42 in $x
echo $x; // prints 42
echo $x+1; // prints 43, value of S$x is still 42

$x = ‘hello!’ // type of $x can change

0 PHP is a loosely-typed language

O Do not need to declare the type of a variable

O Type can change throughout the program

Operators
N

O Arithmetic operators

o+, - % /, % (modulus — remainder after division)
0 Logical AND (&&), OR (]| |), NOT (})
0 Assignment operators (=)
O Shorthand for assignment operators:

OSx += Sy equivalentto $Sx = $x + Sy

O Also works with subtraction, multiplication, division,
modulus, and string concatenation

— — Versus

I
0 Two “equality” operators

O == tests for “equality” in value but not necessarily type
O === tests for “identity” in value AND type
0 == ignores the distinction between:

O Integers, floating point numbers, and strings containing
the same numerical value

O Nonzero numbers and boolean TRUE

O Zero and boolean FALSE

O Empty string, the string ‘O’ and boolean FALSE
O Any other non-empty string and boolean TRUE

Strings
N

0 Concatenation of strings — the . operator

Sa = ‘hello’;
Sb = ‘world’;
echo Sa . Y 'Y . $b . ‘', // prints ‘hello world!’

O String functions
O Length: strlen()
O Position of substring: strpos()

O More on string functions:

PHP

Syntax: Conditional and Looping Statements

64755

"lir WEB PROGRI\mmInE CUITIPETITIOI‘I

Conditional Statements

if (condition / boolean expression) {
statements

}

else 1f (another condition) {
statements

}

// there may be more than one else if block

else {
statements
}
$x = 5;
if (Sx == 5) {

echo ‘The wvariable x has wvalue 5!7;

Loops
N

$x = 23
while ($x < 1000) {
echo $x . “\n”; // \n is newline character
SX = Sx * $9x;
}
do {
echo $Sx . “\n”;
$xX = $x * 89x;
} while (Sx < 1000); // note the semicolon

for ($1 = 1; S1i <= 10; S$i++) {
echo Si . “:” . ($1 * $1) . “\n”;

}

PHP

Syntax: Functions and Global Variables

64755

"lir WEB PROGRI\mmInE CUITIPETITIOI‘I

Defining your own functions

function function name ($Sargl, Sarg?) {
function code function parameters

return Svar // optional

}

Example: a simple multiply function

function multiply- {

echo $x * Sy;
echo “\n”;

}

multiply-; —> prints 6

Sa = 5;
Sb = 1.2;
multiply ; > prints 6

$a = array(l,2,3);

multiply (Sa, Sb); =2 error

$a = “string”

multiply (Sa, S$b); -2 prints O (2])

Return values

O A function can return a value after it is done

O Use this value in future computation, use like a variable,
assign value to a variable

function multiply ($x, Sy) {
return $x * Sy;

}

multiply (2, 3); -2 prints nothing! returns value, but we don’t store anywhere
echo multiply (2,3); =2 printsé

Sa = multiply(2,3); =2 assignsthe value 6 to the variable $a

Sb = multiply (multiply(2,3), multiply(3,4)); =2 assigns the
value 72 to the variable $b

Variable scope

O Variables declared within a function have local scope

O Can only be accessed from within the function

<?php
function functionl () {

. // some code

$local var = 5; // this variable is LOCAL to

// functionl ()
echo $local var + 3; // prints 8

}

.. // some code
functionl () ;

echo $local var; // does nothing, since $local var is

// out of scope

?>

Global variable scope
N

O Variables declared outside a function have global

scope

O Use global keyword to gain access within functions

<?php

function functionl () {
echo $a; // does nothing, $a is out of scope
global Sa; // gain access to $a within function
echo $Sa; // prints 4

. // some code
Sa = 4; // $a 1s a global variable
functionl () ;

?>

PHP

Syntax: Arrays

Arrays as a list of elements
N

0 Use arrays to keep track of a list of elements using
the same variable name, identifying each element by
its index, starting with O

Scolors = array(‘red’, ‘blue’, ‘green’, ‘black’, ‘yellow’);
0 To add an element to the array:

Scolors[] = ‘purple’;

0 To remove an element from the array:
unset ($Scolors[2]);

$colors = array values(Scolors);

Arrays as key-value mappings
—r

O Use arrays to keep track of a set of unique keys and the
values that they map to — called an associative array
$favorite colors = array(‘'Joe’ => ‘blue’, ‘Elena’ =>

‘green’,
‘Mark’” => ‘brown’, ‘Adrian’ => ‘black’, ‘Charles’ =>

'199T6’add an element to the array:
$favorite colors[‘'Bob’] = ‘purple’;
O To remove an element from the array:
unset ($favorite colors([‘Charles’]);
0 Keys must be unique:

Sfavorite colors[‘Joe’] = ‘purple’ overwrites ‘blue’

The for-each loop
I

O The for-each loops allow for easy iteration over all
elements of an array.

foreach (Scolors as S$color) {
echo $color; // simply prints each color
}
foreach (Scolors as Snumber => color) {
echo “Snumber => Scolor”; // prints color with index
// to change an element:
// $colors[$Snumber] = Snew color;

PHP

HTTP Requests and Forms

64755

"lir WEB PROGRI\mmmE CUITIPETITIOI‘I

Superglobals
N

0 A few special associative arrays that can be
accessed from anywhere in a PHP file

0 The $_SERVER superglobal gives information about
server and client
O $ SERVER[‘'SERVER_ADDR’] - server IP
O $ SERVER[‘REMOTE_ADDR’] = client IP

O $ SERVER['HTTP_USER_AGENT’] = client OS and
browser

Passing information to the server

T
0 Sometimes, we require additional values be passed
from client to server
O Login: username and password

O Form information to be stored on server

0 GET request: pass information via the URL
O

O Access values server-side using $_GET superglobal
m $_GET[firstparam’] => ‘firstvalue’
m $_GET['secondparam’] => ‘secondvalue’

When to use $§ GET vs. $ POST

0 GET requests are sent via the URL, and can thus be
cached, bookmarked, shared, etc

0 GET requests are limited by the length of the URL

0 POST requests are not exposed in the URL and
should be used for sensitive data

O There is no limit to the amount of information passed
via POST

Dealing with forms
N

0 Forms are generally used to collect data, whether
the data needs to be stored on the server
(registration) or checked against the server (login)

O 2 components to a form:
O The HTML generating the form itself

O The server-side script that the form data is sent to (via
GET or POST), taking care of the processing involved

m Server should respond appropriately, redirecting the user to
the appropriate destination or generating the appropriate

page

Forms: client-side

<html>
<head>

<title> A Form Example </title>
</head><body>

<form|action="welcome.php" method="post"}
Name:
 <input type="text" |[name="name' />

Phone Number:
 <input type="text" name="phone? /><br /
>

<input type="submit" wvalue="Submit">
</form>

</body>
</html>

0 form action — where to send the form data
0 method — how to send the data (GET or POST)

0 Name attributes become the keys used to access the
corresponding fields in the $_GET or $_POST arrays

Forms: server-side
I 5

<html>

<head><title>This is welcome.php</title></head>
<body>

The name that was submitted was:

<?php echo $ POST['name']; ?>

The phone number that was submitted was:
<?php echo $ POST['phone']; ?>

</body>

</html>

O A simple PHP file that displays what was entered
into the form

O Can do many other things server-side depending on the
sitfuation

PHP

Cookies and Sessions

64755

"lir WEB PROGRI\mmmE CUITIPETITIOI‘I

Cookies and sessions
I

O HTTP is stateless — it does not keep track of the
client between requests

O But sometimes we need to keep track of this
information
O Shopping cart
O “Remember me” on login sites
0O 2 solutions to this issue
O Cookies — small file stored client-side

O Sessions — relevant data stored on the server

cookies in http

cookie is
> name-value pair
> expiration, path & domain

server sends
> using set-cookie header

browser sends back
> all unexpired cookies
> with matching path

expiration
> session cookies: on quit
> persistent cookies: on expire

¥ Request Headers

¥ Response Headers

Headers | Content

Request URL: http://www.nytimes.com/

Request Method: GET

Status Code: @ 200 0K

view source

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=
Accept-Encoding: gzip, deflate

Accept-Language: en-us

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_6_8) AppleWebK
34.50

view source

Cache-Control: no-cache

Content-Encoding: gz1ip

Content-Type: text/html; charset=UTF-8

Date: Mon, 17 Oct 2011 01:24:47 GMT

Expio@imthu, 01 Dec 1994 16:00:00 GMT

‘ragma: no-§ache

Server: Sun-0iE-Web-Server/6.1

Set-Cookie: ac «cl=1%28bbe=4ed458bf:1; expires=Tuesday, 16-0ct-2012 @

2814a=0:2|s) 25381=0:4|s%25549=0:5; path=/; domain=.nytimes.com, ad

12 01:24:47' GMT; path=/; domain=.nytimes.com, adxcs=s*2814a=0:2|s%*
NYT-S=200ON1AGRXT]230¢VbGbyVE]S401/QKWitxy4WMgFBexX1gbbbnUzC2NaMwo

mob, poyubyCajmrQATLah2.1LauaYbgS5XyGdqHTMtTL8yWPf5) /eoiuDBR/IADKE34z2

Nrl/B6iWk8LHU®; expires=Saturday, 14-Apr-2012 01:24:47 GMT; path=/

Transfer-Encoding: Identity

a funny cookie tale
nytimes.com used cookies
to count #articles read, so
viewers just deleted
cookies...

Cookies
I

0 Cookies are stored on the user’s browser, and are
sent to the server on every relevant request

0 The $_COOKIE superglobal makes a cookie a key-
value pairing
O Store user information as a value with a known key

O Never assume a cookie has been set. Always check with
isset ($ COOKIE[Scookie name]) before trying to use
the cookie’s value

The setcookie() function
N

O

To set a cookie in PHP:
setcookilie (name, value, explre, path, domain);

Name and value correspond to $ COOKIE [$name] =
sSvalue

Expiration — cookie will no longer be read after the
expiration
O Useful to use time in seconds relative to the present:

m time () + time in seconds until expiration
Path and domain refer to where on the site the cookie is
valid
O Usually ¢/ for path and the top-level domain (yoursitename.com)

To delete a cookie, set a new cookie with same arguments
but expiration in the past

Setting cookies
N

0 Cookies are set via the HTTP header

O Must be sent before the body — before any HTML, CSS,
JS, etc.

0 This code will not work:

if (isset (5 COOKIE["6470"]))
$value = S COOKIE['6470'];
echo "Cookie is set to $value";
}
else {
Svalue = 0;
}
// after echo statement: will not work!
setcookie ("6470", Svalue+l, time()+60*60);?>

Sessions
I

0 Two main disadvantages of cookies
O Limited in size by browser
O Stored client-side = users / malicious people can change

0 Sessions store user data on the server
O Limited only by server space

O Cannot be modified by users

0 A potential downside to sessions is that they expire
when the browser is closed

O Sessions are identified by a session id: often a small
cookie! But the rest of the data is still stored on the
server

Using sessions

0 Call session_start() at top of every page to start session

O Sets a cookie on the client: must follow same rules as cookies
(before any HTML, CSS, JS, echo or print statements)

0 Access data using the $_SESSION superglobal

<?php

session start();

if (isset (S _SESSION["count"]))
$ SESSION["count"] += 1;

echo "You\'ve visited here {$ SESSION['count']}
times";
}
else {
$ SESSION["count"] = 1;
echo "You\'ve visited once";

Removing sessions
—r

0 Remove an individual element of the $ SESSION
superglobal

O unset($_SESSION[‘key_name’]);

0 Destroy the entire session, remove all data
O Use the function session_destroy()

O $_SESSION no longer valid

O Will need to call session_start() to start a new session

Recap: a comparison
—r

Where is data stored?

Expiration?

Size limite

Accessing information?

General use?

Locally on client

Variable — determined
when cookie is set

Depends on browser

$_COOKIE

Remember small things
about the user, such as
login name. Remember
things after re-opening
browser

Remotely on server

Session is destroyed
when the browser is
closed

Depends only on server
(practically no size
limit)

$_SESSION

Remembering varying
amount of data about
the user in one
browsing “session”.
More sensitive info.

Databases and MySQL

0 Databases give us an easy way to issue
“commands” to insert, select, organize, and remove
data

0 MySQL: open-source database, relatively easy to
set up, easy to use with PHP

O Other SQL databases, as well as non-SQL options such
as MongoDB

Connecting to MySQL
N

0 MySQL database server can contain many
databases, each of which can contain many tables

0 Connecting to the server via PHP:
$db = mysqgl connect (server, username, password);
if (!8db) |
// terminate and give error message
die (mysqgl error());

}
mysgl select db(database name, S$db);

0 $db is a database resource type. We use this
variable to refer to the connection created

Making SQL queries
N

0 PHP function for making queries:
mysqgl query(query string, db resource);
0 Queries that return information, such as SELECT:

returns a resource
$result = mysgl query(query string, $db);

O In this case, this resource is stored in the variable $result
0 Other queries, returns TRUE upon success.

0 All queries return FALSE on failure. Best practice is
to handle the error (e.g. die (mysql error()))

Retrieving information from a query
N

O Loop over the returned $result resource, row by row

Sresult = mysgl query(query, S$Sdb);

while (Srow = mysql fetch assoc($result)) {
$coll = Srow['column 1 name'];
$col2 = Srow['column 2 name'];
// and so forth...

A shared database resource
I
0 Don’t repeat code - put database connection, select
database code into the same file

0 Reference the connection resource ($db) in other
files (using include($file path))

SQL queries

O INSERT INTO table_name (coll, col2 ...) VALUES
(vall, val2 ...)

0 SELECT coll, col2 ... FROM table_name WHERE
conditions

0 CREATE TABLE table_name (column_name
data_type(size), column_name data_type(size) ...)

The relational model
I

O Indicate relations between objects (rows) with an id
— a pointer to a row in a different table

0 The INNER JOIN

what is a relational database?

a relation is a set of tuples

users

“

> tuple is ordered, setisn't A | Alert | aa@mit

2 Chloe Closure | cc@mit blah
a relational database iS 3 Ben |Bitdiddle | ben@mit| 1010
> a set of named relations Suedts
> with named columns 1 3 [ucid ;

2 2 Clover 1

3 3 Cosi 1

reviews

1 | 3 |yummy!| 5 | 2
2 | 2 | neat | 4 | 1
categories

0 name |

Food
Tech

Travel

query operators

relational algebra operators

> select: filter rows by a predicate
> project: filter by columns

> product: combine two tables

in SQL, all parts of select statement

—— show content and ratings of reviews about Clover
select content, rating from subjects, reviews
where subjects.i1d = reviews.about and name = "Clover"

deconstructing a query

subjects reviews

Ilﬁﬂllllllllllﬂﬂ!llﬁﬁﬂﬂl IIIIIIIMIHMMHIIMHEIIMMEI

Lucid | 3 |yummy| |
Clover 2 | 2 |neat| 4 | 1

Cosi

— product operator (implicit in list of tables)
select *x from subjects, reviews

id by name category id by content rating about
1 3 Lucid 2 1 3 yummy! 5 2
1 3 Lucid 2 2 2 neat 4 1
2 2 Clover 1 1 3 yummy! 5 2
2 2 Clover 1 2 2 neat 4 1
3 3 Cosi 1 1 3 yummy! 5 2
3 3 Cosi 1 2 2 neat 4 1

examples from RazorSQL: available at http://www.razorsql.com/

deconstructing a query

subjects reviews

Ilﬁﬂllllllllllﬂﬂ!llﬁﬁﬂﬂl IIIIIIIMIHMMHIIMHEIIMMEI

Lucid | 3 |yummy| 5 |
Clover 2 | 2 |neat| 4 | 1

Cosi

—— selection operator (where)
select *x from subjects, reviews

2 - — = R | T
where subjects.id = reviews.about and name = "Clover
id by name category id by content rating about
1 3 Lucid 2 1 3 yummy! 5 2
1 3 Lucid 2 2 2 neat 4 1
2 2 Clover 1 1 3 yummy! 5 2
2 2 Clover 1 2 2 neat 4 1
3 3 Cosi 1 1 3 yummy! 5 2
3 3 Cosi 1 2 2 neat 4 1
id by name category id by content rating about

2 2 Clover 1 1 3 yummy! 5 2

deconstructing a query

subjects reviews

“_ “

Lucid 3 yummy' 5

Clover 2 neat

Cosi

projection operator (implicit in list of columns)
select content, rating from subjects, reviews

n " - u — il]|
where subjects.1d = reviews.about and name = "Clover

id by name category id by content rating about

1 3 Lucid 2 1 3 yummy! 5 2

1 3 Lucid 2 2 2 neat 4 1

2 2 Clover 1 1 3 yummy! 5 2

2 2 Clover 1 2 2 neat 4 1

3 3 Cosi 1 1 3 yummy! 5 2

3 3 Cosi 1 2 2 neat 4 1

id by name category id by content rating about

2 2 Clover 1 1 3 yummy! 5 2

content rating

yummy! 5

your turn

what does this query say?

select distinct name from subjects, reviews
where rating = 5

—— lists all subject names: oops!

name |

6005: Programming for Pleasure
6170: Spring 2012 Edition

Clover
Cosi
Lucid
Peets Coffee
Upton Tea
u)| id |first |last ‘email ‘password | &I id |name id |by |content ‘rating |about |
a'; 1 Chloe Closure ccamit.edu foo () 1 Food 1 1 My favorite food truck. Delicious vegetar... S 1
4 2 Ben Bitdiddle bb@mit.edu foo 4 2 Software 2 1 Diagramming software app. Cloud base... 2 2
= 3 Alice Alert aa@mit.edu foo (g 3 Education WV 3 2 |like this place too. And they have really... 4 1
4 Dee Normalize dee@mit.edu password 4 Coffee Shops ; 4 2 Nice sandwiches and salads. 3 3
i [Toy Jrame cegory | categon_rame | O o e
'Id ; i (L:le?i’sr ; ;g?taare > 7 1 Thisis a fun one! Almost no work, and a... S 5
@3 2 Cos 1 Food Q) 8 1 This class is not so good for my self este... 2 5
«==4s T3 TUbton Tea 1 Food = 9 1 A nice place for a quick lunch. 3 3
0 piof : : 10 4 [I've never had so much fun in my life! 5 7
- > |1 6005: Prfc;grammmg for Pleasure |3 Ed:fcatlon 11 4 Pleasurable, but take 6170 for even mo... 4 5
6 1 Peets Coffee 4 Coffee ’ - .
WV |7 4 6170: Spring 2012 Edition 3 Education e e /

special operators

> order by: sort the results by some column
> sum, avg, count, max, min
> group by: group rows before applying functions

—— show subjects and their average ratings
select name, avg(rating) from subjects, reviews
where reviews.about = subjects.id group by subjects.id

—— show reviews ordered by rating
select name, content, rating from subjects, reviews
where reviews.about = subjects.id order by rating

[name ' content ‘rating |
Clover Yeah, sure, the food is good. But what about the atmosphere? Especially in winter when it's snowing. 1
Lucid Diagramming software app. Cloud based. Not at all bad, and likely to become better in the future. S... 2
6005: Programming for Pleasure This class is not so good for my self esteem. Where are the closures? 2
Cosi Nice sandwiches and salads. 3
Cosi A nice place for a quick lunch. 3
Clover | like this place too. And they have really cool strategy for taking orders, with people outside the truc... 4
6005: Programming for Pleasure Pleasurable, but take 6170 for even more! 4
Clover My favorite food truck. Delicious vegetarian dishes, and a relatively low ecoli count. 5
Upton Tea Great selection of teas, especially Indian assams and darjeelings. Also lots of fancy teas (eg, their OQo... 5
6005: Programming for Pleasure This is a fun one! Almost no work, and a laugh a minute! You'll have the time of your life. And just thi... 5
6170: Spring 2012 Edition I've never had so much fun in my life! 5
6170: Spring 2012 Edition Good to see the family product in use. Closures rule! 5

PHP

Conclusion

What we’ve talked about...
I

O Purpose of server-side programming
0 Basic PHP syntax, arrays, functions

O Specifics to websites: cookies, sessions, HTTP
requests and forms, MySQL

0O Other server-side solutions:

O ASP.NET
O Python

0O PHP’s extensive documentation:

PHP workshop and tomorrow
-

O Mostly to get you set up with a PHP server, write
some simple code

0 Tomorrow: more server-side frameworks

O Node.js
O Meteor.js

0 35-225, TTAM

