
Introduction to Server-Side Programming 

Charles Liu 



Overview 

1.  Basics of HTTP 
2.  PHP syntax 
3.  Server-side programming 
4.  Connecting to MySQL 



Request to a Static Site 

You (client) Web server 

IP: 72.26.203.99 

HTTP Request: GET www.xkcd.com 

HTTP Response: web content (HTML file) 
Client-side code: HTML, CSS, JavaScript 

Server: 
1.  Homepage 

lookup 
2.  Send as HTTP 

Response  
 



Request to a Dynamic Site 

!  The server must respond dynamically if it needs to provide 
different client-side code depending on the situation 
! Date and time 
!  Specifics of the user’s request 
! Database contents – forms and authentication 

You (client) Web server 

HTTP Request: GET www.facebook.com 

HTTP Response: web content (HTML file) 
Client-side code: HTML, CSS, JavaScript 
 (dynamically generated by server) 

Server: 
1.  Look up things that go on 

user’s profile, such as 
wall posts and friends " 
caches, database 
lookups 

2.  Generate client-side 
code containing these 
things 

3.  Send as HTTP response  
 



sample http interactions

› GET, data passed as query string



sample http interactions

› POST, data passed as form data



allidempotent

safe

POST

PUT
DELETEGET

HEAD

http methods

› safe: no side effects
› idempotent: doing twice same as once
› PUT vs POST: PUT typically names a created object
› PUT & DELETE used in APIs but not usually in browsers



response status codes

categories of codes
› 1xx informational
› 2xx success
› 3xx redirect
› 4xx client error
› 5xx server error
most common codes
› 200 OK (request succeeded, resource is in message body)
› 404 Not Found (resource doesn’t exist)
› 303 See Other (resource moved, see location header)
› 500 Server Error (web app implementer messed up)



Server-side options 

!  PHP – today 
! Easy to start, lower learning curve 
! Potentially messy as your site grows 
 

!  Javascript frameworks – node.js and Meteor.js 
!  Ruby on Rails 

!  Other options – Django, Flask, Sinatra… 



PHP 
 

Introduction and Basic Syntax 

Charles Liu 



What is PHP? 

!  PHP = PHP: Hypertext Preprocessor 
!  Server-side scripting language that may be 

embedded into HTML 
!  Ultimate goal is to get PHP files to generate client-

side code  
! must end up with HTML, CSS, JavaScript, other client-

side code! 
    



Side-by-side 

    
PHP File: 
 
<html> 
<head> 
<title> PHP Introduction </title> 
</head> 
<body> 
This is HTML! <br /> 
<?php 

echo 'This is PHP! <br />';  
?> 
</body> 
</html> 

 

Output: resulting HTML 
 
<html> 
<head> 
<title> PHP Introduction </title> 
</head> 
<body> 
This is HTML! <br /> 
This is PHP! <br /></body> 
</html> 
 



A closer look 

!  PHP tags: <?php and ?> 
!  The echo command 

!  Single line comment ( // ) 

!  Multiple line comment (/* and */) 

 
 
 
 
 
 
 

    

<html> 
<head> 

 <title> PHP Introduction </title> 
</head> 
<body> 
This is HTML! <br /> 
<?php 

echo 'This is PHP! <br />'; // prints to screen 
/* 
Here's a longer 
comment 
that spans multiple 
lines. 
*/ 

?> 
</body> 
</html> 

 



Viewing PHP files 

!  PHP files executed on the web server 
!  Save .php files in subdirectory of web server 

!  /var/www/ on many Linux configurations 
! web_scripts directory of your user directory on Athena 

!  Make call to web server via domain name 
(google.com), IP address (72.26.203.99), or localhost 
if on your own computer 



PHP 
 

Syntax: Variables, Operators, and Strings 

Charles Liu 



Variables 

!  Store values for future reference, use variable name 
to refer to the value stored in it 

!  PHP is a loosely-typed language 
! Do not need to declare the type of a variable 
! Type can change throughout the program 

$x = 42;  // store the value 42 in $x 
echo $x;  // prints 42 
echo $x+1;  // prints 43, value of $x is still 42 
$x = ‘hello!’ // type of $x can change 



Operators 

!  Arithmetic operators 
! +, -, *, /, % (modulus – remainder after division) 

!  Logical AND (&&), OR (||), NOT (!) 
!  Assignment operators (=) 
!  Shorthand for assignment operators: 

! $x += $y equivalent to $x = $x + $y 
! Also works with subtraction, multiplication, division, 

modulus, and string concatenation  
 



== versus === 

!  Two “equality” operators 
! == tests for “equality” in value but not necessarily type 
! === tests for “identity” in value AND type 

!  == ignores the distinction between:  
!  Integers, floating point numbers, and strings containing 

the same numerical value 
! Nonzero numbers and boolean TRUE 
! Zero and boolean FALSE 
! Empty string, the string ‘0’ and boolean FALSE 
! Any other non-empty string and boolean TRUE 
 



Strings 

!  Concatenation of strings – the . operator 
 
 
 
!  String functions 

! Length: strlen() 
! Position of substring: strpos() 
! More on string functions: 

http://www.w3schools.com/php/php_ref_string.asp 
 
 

$a = ‘hello’; 
$b = ‘world’; 
echo $a . ‘ ‘ . $b . ‘!’;  // prints ‘hello world!’  



PHP 
 

Syntax: Conditional and Looping Statements 

Charles Liu 



Conditional Statements 

if (condition / boolean expression) { 
 statements 

} 
else if (another condition) { 

 statements 
} 
// there may be more than one else if block 
else { 

 statements 
} 
 
 
$x = 5; 
if ($x == 5) { 

 echo ‘The variable x has value 5!’; 
} 



Loops 

$x = 2; 
while ($x < 1000) { 

 echo $x . “\n”; // \n is newline character 
 $x = $x * $x; 

} 
 
 
do { 

 echo $x . “\n”; 
 $x = $x * $x; 

} while ($x < 1000);  // note the semicolon 
 
 
for ($i = 1; $i <= 10; $i++) { 

 echo $i . “:” . ($i * $i) . “\n”; 
} 
 



PHP 
 

Syntax: Functions and Global Variables 

Charles Liu 



Defining your own functions 

Example: a simple multiply function 

function function_name ($arg1, $arg2) { 
 function code 
 return $var  // optional 

} 

function parameters 

function multiply($x, $y) { 
 echo $x * $y; 
 echo “\n”; 

} 
multiply(5, 1.2); "  prints 6 
$a = 5; 
$b = 1.2; 
multiply($a, $b); " prints 6 
$a = array(1,2,3); 
multiply($a, $b); " error 
$a = “string” 
multiply($a, $b); " prints 0 (?!) 



Return values 

!  A function can return a value after it is done 
! Use this value in future computation, use like a variable, 

assign value to a variable 

function multiply($x, $y) { 
 return $x * $y; 

} 
multiply(2,3); "  prints nothing! returns value, but we don’t store anywhere 
echo multiply(2,3); " prints 6 
$a = multiply(2,3); " assigns the value 6 to the variable $a 
$b = multiply(multiply(2,3), multiply(3,4)); " assigns the 
value       72 to the variable $b 
 



Variable scope 

!  Variables declared within a function have local scope 
!  Can only be accessed from within the function 
 <?php 
function function1() { 

 … // some code 
 $local_var = 5;  // this variable is LOCAL to 
     // function1() 
 echo $local_var + 3;  // prints 8 

} 
 
… // some code 
function1(); 
echo $local_var;  // does nothing, since $local_var is   

   // out of scope 
  

?> 
 



Global variable scope 

!  Variables declared outside a function have global 
scope 
!  Use global keyword to gain access within functions 
 
 

<?php 
function function1() { 

 echo $a;  // does nothing, $a is out of scope 
 global $a;  // gain access to $a within function 
 echo $a;  // prints 4 

} 
 
… // some code 
$a = 4;  // $a is a global variable 
function1(); 
 
?> 
 



PHP 
 

Syntax: Arrays 

Charles Liu 



Arrays as a list of elements 

!  Use arrays to keep track of a list of elements using 
the same variable name, identifying each element by 
its index, starting with 0 

$colors = array(‘red’, ‘blue’, ‘green’, ‘black’, ‘yellow’); 

!  To add an element to the array: 
 $colors[] = ‘purple’; 

!  To remove an element from the array: 
 unset($colors[2]); 

 $colors = array_values($colors); 



Arrays as key-value mappings 

!  Use arrays to keep track of a set of unique keys and the 
values that they map to – called an associative array 

$favorite_colors = array(‘Joe’ => ‘blue’, ‘Elena’ => 
‘green’, 
 ‘Mark’ => ‘brown’, ‘Adrian’ => ‘black’, ‘Charles’ => 
‘red’); !  To add an element to the array: 

 $favorite_colors[‘Bob’] = ‘purple’; 

!  To remove an element from the array: 
 unset($favorite_colors[‘Charles’]); 

!  Keys must be unique: 
 $favorite_colors[‘Joe’] = ‘purple’ overwrites ‘blue’ 



The for-each loop 

!  The for-each loops allow for easy iteration over all 
elements of an array. 

 
foreach ($colors as $color) { 

 echo $color;  // simply prints each color 
} 
foreach ($colors as $number => color) { 

 echo “$number => $color”; // prints color with index 
 // to change an element: 
 // $colors[$number] = $new_color; 

 
 
 



PHP 
 

HTTP Requests and Forms 

Charles Liu 



Superglobals 

!  A few special associative arrays that can be 
accessed from anywhere in a PHP file 

!  The $_SERVER superglobal gives information about 
server and client 
! $_SERVER[‘SERVER_ADDR’] " server IP 
! $_SERVER[‘REMOTE_ADDR’] " client IP 
! $_SERVER[‘HTTP_USER_AGENT’] " client OS and 

browser 



Passing information to the server 

!  Sometimes, we require additional values be passed 
from client to server 
! Login: username and password 
! Form information to be stored on server 

!  GET request: pass information via the URL 
! http://www.yourdomain.com/yourpage.php?

firstparam=firstvalue&secondparam=secondvalue 
! Access values server-side using $_GET superglobal 

# $_GET[‘firstparam’] => ‘firstvalue’ 
# $_GET[‘secondparam’] => ‘secondvalue’ 



When to use $_GET vs. $_POST 

!  GET requests are sent via the URL, and can thus be 
cached, bookmarked, shared, etc 

!  GET requests are limited by the length of the URL 
!  POST requests are not exposed in the URL and 

should be used for sensitive data 
!  There is no limit to the amount of information passed 

via POST 



Dealing with forms 

!  Forms are generally used to collect data, whether 
the data needs to be stored on the server 
(registration) or checked against the server (login) 

!  2 components to a form: 
! The HTML generating the form itself 
! The server-side script that the form data is sent to (via 

GET or POST), taking care of the processing involved 
# Server should respond appropriately, redirecting the user to 

the appropriate destination or generating the appropriate 
page 



Forms: client-side 

!  form action – where to send the form data 
!  method – how to send the data (GET or POST) 
!  Name attributes become the keys used to access the 

corresponding fields in the $_GET or $_POST arrays 

<html> 
    <head> 
        <title> A Form Example </title> 
    </head><body> 
<form action="welcome.php" method="post"> 
Name: <br /> <input type="text" name="name" /><br /> 
Phone Number: <br /> <input type="text" name="phone" /><br /
> 
<input type="submit" value="Submit"> 
</form> 
</body> 
</html> 



Forms: server-side 

!  A simple PHP file that displays what was entered 
into the form 
! Can do many other things server-side depending on the 

situation 

<html> 
<head><title>This is welcome.php</title></head> 
<body> 
The name that was submitted was: &nbsp; 
<?php echo $_POST['name']; ?><br /> 
The phone number that was submitted was: &nbsp; 
<?php echo $_POST['phone']; ?><br /> 
</body> 
</html> 



PHP 
 

Cookies and Sessions 

Charles Liu 



Cookies and sessions 

!  HTTP is stateless – it does not keep track of the 
client between requests 

!  But sometimes we need to keep track of this 
information 
! Shopping cart 
! “Remember me” on login sites 

!  2 solutions to this issue 
! Cookies – small file stored client-side 
! Sessions – relevant data stored on the server 



cookies in http

cookie is
› name-value pair
› expiration, path & domain
server sends
› using set-cookie header
browser sends back
› all unexpired cookies
› with matching path
expiration
› session cookies: on quit
› persistent cookies: on expire

a funny cookie tale
nytimes.com used cookies 
to count #articles read, so 
viewers just deleted 
cookies...



Cookies 

!  Cookies are stored on the user’s browser, and are 
sent to the server on every relevant request 

!  The $_COOKIE superglobal makes a cookie a key-
value pairing 
! Store user information as a value with a known key 
! Never assume a cookie has been set. Always check with 
isset($_COOKIE[$cookie_name]) before trying to use 
the cookie’s value 



The setcookie() function 

!  To set a cookie in PHP: 
 setcookie(name, value, expire, path, domain); 

!  Name and value correspond to $_COOKIE[$name] = 
$value 

!  Expiration – cookie will no longer be read after the 
expiration 
!  Useful to use time in seconds relative to the present: 

#  time() + time in seconds until expiration 

!  Path and domain refer to where on the site the cookie is 
valid 
!  Usually ‘/’ for path and the top-level domain (yoursitename.com) 

!  To delete a cookie, set a new cookie with same arguments 
but expiration in the past 



Setting cookies 

!  Cookies are set via the HTTP header 
! Must be sent before the body – before any HTML, CSS, 

JS, etc. 

!  This code will not work: 
  
if(isset($_COOKIE["6470"])) { 

 $value = $_COOKIE['6470']; 
 echo "Cookie is set to $value"; 

} 
else { 

 $value = 0; 
} 
// after echo statement: will not work! 
setcookie("6470", $value+1, time()+60*60);?> 



Sessions  

!  Two main disadvantages of cookies 
!  Limited in size by browser 
!  Stored client-side " users / malicious people can change 

!  Sessions store user data on the server 
!  Limited only by server space 
! Cannot be modified by users 

!  A potential downside to sessions is that they expire 
when the browser is closed 

!  Sessions are identified by a session id: often a small 
cookie! But the rest of the data is still stored on the 
server 



Using sessions   

!  Call session_start() at top of every page to start session 
!  Sets a cookie on the client: must follow same rules as cookies 

(before any HTML, CSS, JS, echo or print statements) 
!  Access data using the $_SESSION superglobal 

<?php 
session_start(); 
if (isset($_SESSION["count"])) { 

$_SESSION["count"] += 1; 
echo "You\'ve visited here {$_SESSION['count']} 
times"; 

} 
else { 

$_SESSION["count"] = 1; 
echo "You\'ve visited once"; 

} 
?> 



Removing sessions 

!  Remove an individual element of the $_SESSION 
superglobal 
! unset($_SESSION[‘key_name’]); 

!  Destroy the entire session, remove all data 
! Use the function session_destroy() 
! $_SESSION no longer valid 
! Will need to call session_start() to start a new session 



Recap: a comparison   

COOKIES SESSIONS 

Where is data stored? Locally on client Remotely on server 

Expiration? Variable – determined 
when cookie is set 

Session is destroyed 
when the browser is 
closed 

Size limit? Depends on browser Depends only on server 
(practically no size 
limit) 

Accessing information? $_COOKIE $_SESSION 

General use? Remember small things 
about the user, such as 
login name. Remember 
things after re-opening 
browser 

Remembering varying 
amount of data about 
the user in one 
browsing “session”. 
More sensitive info. 



PHP 
 

MySQL 

Charles Liu 



Databases and MySQL 

!  Databases give us an easy way to issue 
“commands” to insert, select, organize, and remove 
data 

!  MySQL: open-source database, relatively easy to 
set up, easy to use with PHP 
! Other SQL databases, as well as non-SQL options such 

as MongoDB 



Connecting to MySQL 

!  MySQL database server can contain many 
databases, each of which can contain many tables 

!  Connecting to the server via PHP: 

 
!  $db is a database resource type. We use this 

variable to refer to the connection created 

$db = mysql_connect(server, username, password); 
if (!$db) { 

 // terminate and give error message 
 die(mysql_error()); 

} 
mysql_select_db(database_name, $db); 



Making SQL queries 

!  PHP function for making queries: 
 mysql_query(query_string, db_resource); 

!  Queries that return information, such as SELECT: 
returns a resource 

 $result = mysql_query(query_string, $db); 

!  In this case, this resource is stored in the variable $result 

!  Other queries, returns TRUE upon success. 
!  All queries return FALSE on failure. Best practice is 

to handle the error (e.g. die(mysql_error())) 



Retrieving information from a query 

!  Loop over the returned $result resource, row by row 

$result = mysql_query(query, $db); 
while ($row = mysql_fetch_assoc($result)) { 

$col1 = $row['column_1_name']; 
$col2 = $row['column_2_name']; 
// and so forth... 

} 



A shared database resource 

!  Don’t repeat code - put database connection, select 
database code into the same file 

!  Reference the connection resource ($db) in other 
files (using include($file_path)) 



SQL queries 

!  INSERT INTO table_name (col1, col2 …) VALUES 
(val1, val2 …) 

!  SELECT col1, col2 … FROM table_name WHERE 
conditions 

!  CREATE TABLE table_name  (column_name 
data_type(size), column_name data_type(size) …) 



The relational model 

!  Indicate relations between objects (rows) with an id 
" a pointer to a row in a different table 

!  The INNER JOIN 



what is a relational database?

a relation is a set of tuples
› tuple is ordered, set isn’t
a relational database is
› a set of named relations
› with named columns

id name
1 Food
2 Tech
3 Travel

categories

id first last email password
1 Ann Alert aa@mit aa
2 Chloe Closure cc@mit blah
3 Ben Bitdiddle ben@mit 1010

users

id by name category
1 3 Lucid 2
2 2 Clover 1
3 3 Cosi 1

subjects

id by content rating about
1 3 yummy! 5 2
2 2 neat 4 1

reviews



query operators

relational algebra operators
› select: filter rows by a predicate
› project: filter by columns
› product: combine two tables
in SQL, all parts of select statement
-- show content and ratings of reviews about Clover
select content, rating from subjects, reviews
  where subjects.id = reviews.about and name = "Clover"



deconstructing a query

-- product operator (implicit in list of tables)
select * from subjects, reviews

id by content rating about
1 3 yummy! 5 2
2 2 neat 4 1

reviews

id by name category
1 3 Lucid 2
2 2 Clover 1
3 3 Cosi 1

subjects

examples from RazorSQL: available at http://www.razorsql.com/



deconstructing a query

-- selection operator (where)
select * from subjects, reviews
  where subjects.id = reviews.about and name = "Clover"

id by content rating about
1 3 yummy! 5 2
2 2 neat 4 1

reviews

id by name category
1 3 Lucid 2
2 2 Clover 1
3 3 Cosi 1

subjects



deconstructing a query

-- projection operator (implicit in list of columns)
select content, rating from subjects, reviews
  where subjects.id = reviews.about and name = "Clover"

id by content rating about
1 3 yummy! 5 2
2 2 neat 4 1

reviews

id by name category
1 3 Lucid 2
2 2 Clover 1
3 3 Cosi 1

subjects



your turn
what does this query say?

-- lists all subject names: oops!

select distinct name from subjects, reviews
   where rating = 5

ca
te

gs

su
bj

ec
ts

re
vi

ew
sus

er
s



special operators

› order by: sort the results by some column
› sum, avg, count, max, min
› group by: group rows before applying functions

-- show subjects and their average ratings
select name, avg(rating) from subjects, reviews
  where reviews.about = subjects.id group by subjects.id

-- show reviews ordered by rating
select name, content, rating from subjects, reviews
  where reviews.about = subjects.id order by rating



PHP 
 

Conclusion 

Charles Liu 



What we’ve talked about… 

!  Purpose of server-side programming 
!  Basic PHP syntax, arrays, functions 
!  Specifics to websites: cookies, sessions, HTTP 

requests and forms, MySQL 
!  Other server-side solutions: 

! ASP.NET 
! Python 

!  PHP’s extensive documentation: 
http://www.php.net/manual/en 

 



PHP workshop and tomorrow 

!  Mostly to get you set up with a PHP server, write 
some simple code 

!  Tomorrow: more server-side frameworks 
! Node.js 
! Meteor.js 

!  35-225, 11AM 


